A solitary-wave solution to a perturbed KdV equation
نویسندگان
چکیده
منابع مشابه
Travelling Wave Solution of Two-Dimensional Nonlinear KdV-Burgers Equation
Abstract In this study, we present two different methods a sech-tanh method and extended tanh-method to obtained the soliton solutions of the two-dimensional Korteweg-de Vries-Burgers (KdVB) equation with the initial conditions. These solutions include bright and dark solitary wave solutions, triangular solutions and complex line soliton wave solution. These solutions are stable and have applic...
متن کاملSolitary wave solutions for a generalized KdV–mKdV equation with distributed delays∗
In the past three decades, traveling wave solutions to the Korteweg–de Vries equation have been studied extensively and a large number of theoretical issues concerning the KdV equation have received considerable attention. These wave solutions when they exist can enable us to well understand the mechanism of the complicated physical phenomena and dynamical processes modeled by these nonlinear e...
متن کاملNumerical Solution to a Linearized KdV Equation on Unbounded Domain
Exact absorbing boundary conditions for a linearized KdV equation are derived in this paper. Applying these boundary conditions at artificial boundary points yields an initial-boundary value problem defined only on a finite interval. A dual-Petrov-Galerkin scheme is proposed for numerical approximation. Fast evaluation method is developed to deal with convolutions involved in the exact absorbin...
متن کاملWeakly Non-local Solitary Wave Solutions of a Singularly Perturbed Boussinesq Equation
We study the singularly perturbed (sixth-order) Boussinesq equation recently introduced by Daripa and Hua [Appl. Math. Comput. 101 (1999), 159-207]. This equation describes the bi-directional propagation of small amplitude and long capillary-gravity waves on the surface of shallow water for Bond number less than but very close to 1/3. On the basis of far-field analyses and heuristic arguments, ...
متن کاملEvolution of solitary waves for a perturbed nonlinear Schrödinger equation
Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Plasma Physics
سال: 2000
ISSN: 0022-3778,1469-7807
DOI: 10.1017/s0022377800008813